High reliability sensing circuit for deep submicron spin transfer torque magnetic random access memory
نویسندگان
چکیده
Techset Com A high reliability offset-tolerant sensing circuit is presented for deep submicron spin transfer torque magnetic tunnel junction (STT-MTJ) memory. This circuit, using a triple-stage sensing operation, is able to tolerate the increased process variations as technology scales down to the deep submicron nodes, thus improving significantly the sensing margin. Meanwhile, it clamps the bit-line voltage to a predefined small bias voltage to avoid any read disturbance during the sensing operations. By using the STMicroelectronics CMOS 40 nm design kit and a precise STT-MTJ compact model, Monte Carlo simulations have been carried out to evaluate its sensing performance.
منابع مشابه
A low-cost built-in error correction circuit design for STT-MRAM reliability improvement
Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) possesses various merits, such as non-volatility, low power and high speed. It has been considered as a promising non-volatile memory candidate used universally in logic computing, cache and storage applications. However it suffers from serious reliability issues compared with conventional schemes, especially in deep submicron techno...
متن کاملSpin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects
Spin-transfer torque (STT) switching demonstrated in submicron sized magnetic tunnel junctions (MTJs) has stimulated considerable interest for developments of STT switched magnetic random access memory (STT-MRAM). Remarkable progress in STT switching with MgO MTJs and increasing interest in STTMRAM in semiconductor industry have been witnessed in recent years. This paper will present a review o...
متن کاملStudy of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque
MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based o...
متن کاملA Compact Model for the Magnetic Tunnel Junction Switched by Thermally Assisted Spin Transfer Torque (STT+TAS)
Thanks to its non-volatility, high write/read speed and easy integration with CMOS process, Magnetic Tunnel Junctions (MTJ) has become a cornerstone of spin electronics such as the Magnetic RAM (MRAM) [1] and Magnetic logic [2-3]. The current research in MTJ nanopillar focus on the high performance (power efficient, high speed and high reliability) switching approaches, as the two high currents...
متن کاملResonant spin-transfer-driven switching of magnetic devices assisted by microwave current pulses
The torque generated by the transfer of spin angular momentum from a spin-polarized current to a nanoscale ferromagnet can switch the orientation of the nanomagnet much more efficiently than a current-generated magnetic field and is therefore in development for use in next-generation magnetic random access memory MRAM . Up to now, experiments have focused on spin-torque switching driven by simp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013